

Briefing to the Committee of Operational Processing Centers (COPC)

Jim Yoe, Chief Administrative Officer for the Joint Center for Satellite Data Assimilation (JCSDA)

Status Update

- Who We Are
- How We Relate to COPC
- What's New

Joint Center for Satellite Data Assimilation

Vision: An interagency partnership working to become a world leader in applying satellite data and research to operational goals in environmental analysis and prediction

NASA ESD

Air Force 557th Wing

NWS, NESDIS, GMAO

U.S. Air **Force**

JCSDA

NOAA **NWS**

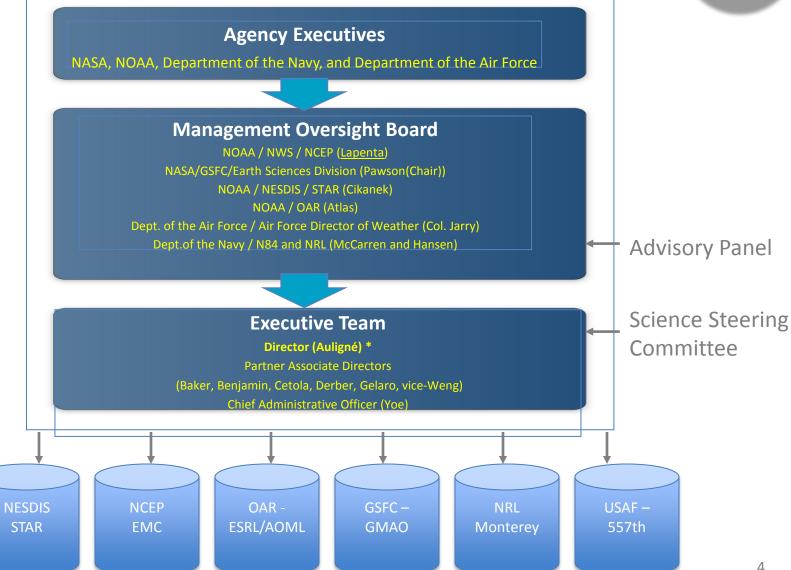
U.S. Navy

> NOAA OAR

NOAA **NESDIS**

Research Community, **Academia**

Google Earth


Science priorities: Radiative Transfer Modeling (CRTM), new instruments, clouds and precipitation, land surface, ocean, atmospheric composition.

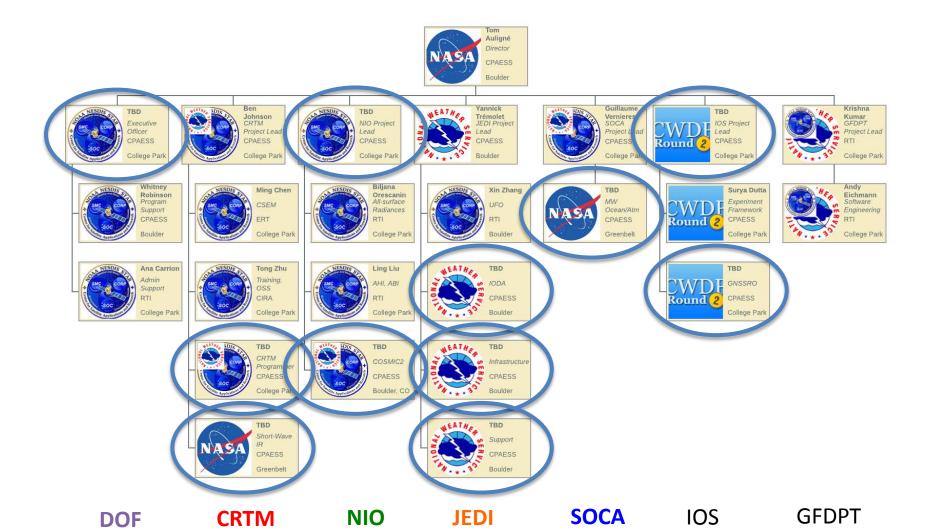
Mission: to accelerate and improve

the quantitative use of research and operational satellite data in weather, ocean, climate and environmental analysis and prediction models.

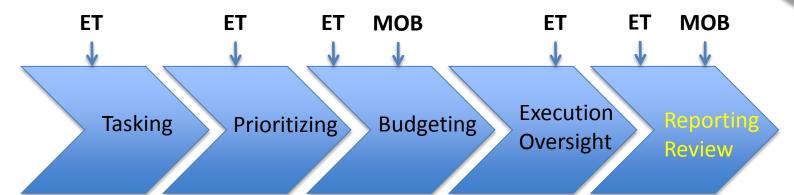
Management Structure

Relationship to COPC

- Direct: Enhanced Data Access
 - JCSDA participates in WGDA
 - Data sources, formats, pipes, metadata, etc.
- Indirect
 - Shared science DA, QC, assessments


New Concept of Operations

- The reaffirmation of the central role of the Executive Team to guide science activities and ensure high level of collaboration, and of the Management Oversight Board to provide management-level oversight and strategic decisions.
- The transition of programmatic, administrative, and operational management to a Non-Government Research Organization (NGRO), which will increase accountability to the JCSDA Director while maintaining close interaction with and oversight from the partner federal agencies.
- The clarification of the **scope of activities** and the associated decision process to determine what constitutes the purview of the JCSDA.
- The formation of a project-based structure with project management targeting science frontiers that are actually jointly pursued among partners.
- The establishment of a **formalized annual cycle** to coordinate the planning, budgeting, execution and reporting of JCSDA activities.

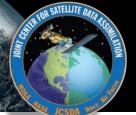

JCSDA 'Core Team' Org Chart

JCSDA Annual Cycle

Jan: Director drafts AOP

Feb: ET prioritizes tasks against resources

Mar: MOB approves AOP


Details regarding processes for planning contributions of staff, \$, and other resources, allocation to priorities and Projects, and Agency review and oversight captured in JCSDA Whitepaper.

April 1: Begin Execution AOP

May: Annual Science Workshop

>> Project Leads present Quarterly Reviews (to ET), followed by Quarterly Reports (to MOB)

AOP 2017: Planned Tasks

Project DOF: Director's Office (Director: Tom Auligné)

Task DOF1: JCSDA management and coordination Task DOF2: Communication, education, and outreach

Task DOF3: JCSDA External Research Program

Task DOF4: Visiting Scientist Program

Project CRTM: Community Radiative Transfer Model (Lead: Ben Johnson)

Task CRTM1: Release of CRTM version 2.3.0 and future release support Task CRTM2: Acceleration of CRTM computations via software optimization

Task CRTM3: Improved physical representation for aerosols, clouds, precipitation, and land surface

Project NIO: New and Improved Observations (Lead: TBD, Ben Johnson acting)

Task NIO1: Assimilation of Radiance Data Over Land and Sea-Ice

Task NIO2: Prepare for the assimilation of AHI, JPSS, GOES-16, COSMIC-2

Project JEDI: Joint Effort for Data assimilation Integration (Lead: Yannick Trémolet)

Task JEDI1: Infrastructure

Task JEDI2: Abstract Code Layer

Task JEDI3: Encapsulated interpolations

Task JEDI4: Encapsulated observation operator (link to GSI code)

Task JEDI5: Interface for observation data access (IODA)

Task JEDI6: Background and Observation Error Covariance matrices

Project SOCA: Sea-ice, Ocean, Coupled Assimilation (Lead: Guillaume Vernieres)

Task SOCA1: Implementation of initial Sea-ice DA Task SOCA2: Develop plan for unified Ocean DA

Directed Project IOS: Impact of Observing System (Lead: TBD)

Task IOS1: Standing capability to assess observation impact

Task IOS2: Toward real-time FSOI intercomparison

Task IOS3: Evaluation of Commercial Weather Data Pilot (CWDP)

Directed Project GFDPT: Global Forecast Dropout Prediction Tool (Lead: Krishna Kumar)

Task GFDPT1: Transition to NCEP

DA Science Grand Challenges

Observations

 Big Data paradigm (volume, variety, velocity): most of total error reduction comes from a large number of observations with small or moderate individual impacts

Models

- Better value for society: forecast model for more components of Earth system (Ocean, Waves, Cryosphere, Land, Hydrology, Aerosols, Atmospheric composition, Ionosphere, etc.)
- Models are getting coupled to better account for interactions

Data Assimilation Algorithms

• DA systems becoming increasingly complex as science progresses: comparing algorithms almost impossible. Optimum may be application/machine dependent

Joint Effort for Data assimilation Integration (JEDI)

- 1. Collective path toward Nation Unified Next-Generation Data Assimilation
- 2. Modular, Object-Oriented code for flexibility, robustness and optimization
- 3. Mutualize **model-agnostic** components across
 - Applications, Models & Grids, Observations (past, current and future)

Roadmap

Stage 1: Unified Forward Operator (UFO). Interpolation from various model grids, comprehensive suite of observation operators, refactoring of operational Quality Control.

Interface for Observation Data Access (IODA). Standardized file format + API for observations in memory.

Stage 2: Covariance matrices, linearized UFO, 3D solvers, bias correction

Stage 3: Optimized components, 4D solvers

Stage 4: Multi-scale, coupled DA

Closing Remarks

JCSDA improving its operations

- AOP improving up-front coordination and accountability
- Targeting inter-dependent activities with clear added value
- Project-based structure focusing on measureable deliverables
- JCSDA staff committed to collaboration
- Enhancing satellite DA to support the OCs
- Working to ensure, improve satellite data access via COPC WG

Extra Slides Follow

Education and Outreach

15th JCSDA Tech Review and Science Workshop + 1st CRTM Users and Developers Workshop

Unified DA Planning Meeting

Joint DTC-EMC-JCSDA GSI/EnKF Tutorial

Joint Workshops with Partners

JCSDA Symposium @AMS: Austin, TX

Summer Colloquium on Satellite DA

Summer 2018: Bozeman, MT

JCSDA Newsletter and Web site

- Highlight achievements by scientists
 - Promote collaboration

Visiting Scientist Program

'B Matrix' Bootcamp – 01-21 Aug 2017 – Boulder, CO

Participation: JCSDA, NCAR, GMAO, OAR, EMC, Météo-France, Met Office

Scope: Design, develop, and test a prototype software for modeling background error covariances in research and operations. The code needs to be self-contained, portable, accurate, efficient, scalable, readable, non-redundant, extensible, documented, tested, with the vision to integrate into the JEDI framework.

